अंकगणित: Difference between revisions
[unchecked revision] | [unchecked revision] |
(''''अंकगणित''' (अँग्रेजी में अरिथमेटिक) गणित की वह शाखा...' के साथ नया पृष्ठ बनाया) |
No edit summary |
||
Line 32: | Line 32: | ||
इस प्रकार अभीष्ट म.स. 84 है। संक्षिप्त रूप में इसे इस प्रकार लिख सकते हैं: | इस प्रकार अभीष्ट म.स. 84 है। संक्षिप्त रूप में इसे इस प्रकार लिख सकते हैं: | ||
[[ चित्र:Equation-.gif|thumb|250px]] | [[ चित्र:Equation-.gif|thumb|250px]] | ||
इस प्रकार अभीष्ट में म.स. ८४ है। संक्षिप्त रूप में इसे इस प्रकार लिख सकते हैं: | इस प्रकार अभीष्ट में म.स. ८४ है। संक्षिप्त रूप में इसे इस प्रकार लिख सकते हैं: | ||
[[ चित्र:Equation2.gif|thumb|250px]] | [[ चित्र:Equation2.gif|thumb|250px]] | ||
अंतिम और प्रथम स्तंभों में क्रमानुसार भागफल और भाजक हैं। | अंतिम और प्रथम स्तंभों में क्रमानुसार भागफल और भाजक हैं। | ||
दो संख्याओं का गुणनफल उनके म.स. और ल.स. के गुणनफल के बराबर होता है। म.स. ज्ञात होने पर, इस नियम से, उन संख्याओं का बिना गुणनखंड किए ल.स. ज्ञात किया जा सकता है। | दो संख्याओं का गुणनफल उनके म.स. और ल.स. के गुणनफल के बराबर होता है। म.स. ज्ञात होने पर, इस नियम से, उन संख्याओं का बिना गुणनखंड किए ल.स. ज्ञात किया जा सकता है। | ||
Line 46: | Line 53: | ||
इन दशमलव पद्धति के प्रयोग द्वारा वे भिन्नें भी लिखी जा सकती हैं जिनका हर 10 का कोई घात हो; यथा: | इन दशमलव पद्धति के प्रयोग द्वारा वे भिन्नें भी लिखी जा सकती हैं जिनका हर 10 का कोई घात हो; यथा: | ||
[[ चित्र:Equation3.gif|thumb|250px]] | [[ चित्र:Equation3.gif|thumb|250px]] | ||
= 35 + 7 ´ 10.1+ 0 ´ 10-2+6 ´ 10-3+4 ´ 10-4 | = 35 + 7 ´ 10.1+ 0 ´ 10-2+6 ´ 10-3+4 ´ 10-4 | ||
Line 51: | Line 63: | ||
दशमलव में योग और व्यवकलन-दशमलव पद्धति में योग ज्ञात करने की निम्नांकित पद्धति अब प्राय: सर्वमान्य है। संख्याओं को एक के नीचे एक इस प्रकार लिखना चाहिए कि दशमलव बिंदु सब एक स्तंभ में अर्थात् एक के नीचे एक रहें। इस प्रकार एकक के सभी अंक एक स्तंभ में पड़ेंगे, दहाई के स्थान वाले अंक एक अन्य स्तंभ में, इत्यादि; उदाहरणत: 53.76, 236081, 408346 का योग यों निकलेगा: | दशमलव में योग और व्यवकलन-दशमलव पद्धति में योग ज्ञात करने की निम्नांकित पद्धति अब प्राय: सर्वमान्य है। संख्याओं को एक के नीचे एक इस प्रकार लिखना चाहिए कि दशमलव बिंदु सब एक स्तंभ में अर्थात् एक के नीचे एक रहें। इस प्रकार एकक के सभी अंक एक स्तंभ में पड़ेंगे, दहाई के स्थान वाले अंक एक अन्य स्तंभ में, इत्यादि; उदाहरणत: 53.76, 236081, 408346 का योग यों निकलेगा: | ||
[[ चित्र:Equation4.gif|thumb|250px]] | [[ चित्र:Equation4.gif|thumb|250px]] | ||
स्पष्ट है कि दशमलवों का योग साधारण जोड़ के समान ही है। ऊपर की क्रिया वस्तुत: निम्नलिखित का संक्षिप्त रूप है: | स्पष्ट है कि दशमलवों का योग साधारण जोड़ के समान ही है। ऊपर की क्रिया वस्तुत: निम्नलिखित का संक्षिप्त रूप है: | ||
5 ´ 10 + 3+ 7 ´ 10<sup>-1</sup>+ 6 ´ 10<sup>-2</sup> | 5 ´ 10 + 3+ 7 ´ 10<sup>-1</sup>+ 6 ´ 10<sup>-2</sup> | ||
Line 61: | Line 79: | ||
व्यवकलन के लिए पूर्वोक्त क्रिया को उलटना होता है। बड़ी संख्या को ऊपर और छोटी को नीचे इस प्रकार लिखना चाहिए जिसमें दशमलव बिंदु एक-दूसरे के | व्यवकलन के लिए पूर्वोक्त क्रिया को उलटना होता है। बड़ी संख्या को ऊपर और छोटी को नीचे इस प्रकार लिखना चाहिए जिसमें दशमलव बिंदु एक-दूसरे के | ||
[[ चित्र:Equation5.gif|thumb|25px]] | [[ चित्र:Equation5.gif|thumb|25px]] | ||
नीचे रहें; फिर साधारण रीति से घटाना चाहिए। शेष में दशमलव बिंदु को ऊपर लिखी संख्याओं के दशमलव बिंदुओं के ठीक नीचे रखना चाहिए, जैसा बगल में दिखाया गया है। | नीचे रहें; फिर साधारण रीति से घटाना चाहिए। शेष में दशमलव बिंदु को ऊपर लिखी संख्याओं के दशमलव बिंदुओं के ठीक नीचे रखना चाहिए, जैसा बगल में दिखाया गया है। | ||
गुणा करने की विधि वितरण नियम पर आधारित है और अंकगणित की अधिकांश पुस्तकों में इसका वर्णन मिल जाएगा। | गुणा करने की विधि वितरण नियम पर आधारित है और अंकगणित की अधिकांश पुस्तकों में इसका वर्णन मिल जाएगा। | ||
यदि दो दशमलव संख्याओं का सन्निकट गुणनफल, मान लें; दशमलव स्थानों तक शुद्ध, ज्ञात करना है, तो सुगमता इसमें है कि इसमें से एक संख्या का (जिसे गुणक कहेंगे) दशमलव बाईं ओर या दाहिनी ओर हटाकर उस संख्या को 1 और 10 के बीच में लाया जाए, फिर उतने ही स्थान विपरीत दिशा में दूसरी संख्या का (जिसे गुण्य कहेंगे) दशमलव भी हटाया जाए तब गुण्य के तीसरे दशमलव स्थान से गुणक के एकक वाले अंक को गुणा आरंभ करना चाहिए। गुणक के दशमलव वाले अंक से गुण्य के दशमलव के दूसरे स्थान से गुणा आरंभ करना चाहिए, इत्यादि। जिन अंक से गुणा करना आरंभ किया जाए उसके दाहिनी ओर वाले अंक के गुणा करके हाथ लगने वाली संख्या ले लेनी चाहिए। यह क्रिया निम्नलिखित उदाहरण स्पष्ट हो जाएगी: | यदि दो दशमलव संख्याओं का सन्निकट गुणनफल, मान लें; दशमलव स्थानों तक शुद्ध, ज्ञात करना है, तो सुगमता इसमें है कि इसमें से एक संख्या का (जिसे गुणक कहेंगे) दशमलव बाईं ओर या दाहिनी ओर हटाकर उस संख्या को 1 और 10 के बीच में लाया जाए, फिर उतने ही स्थान विपरीत दिशा में दूसरी संख्या का (जिसे गुण्य कहेंगे) दशमलव भी हटाया जाए तब गुण्य के तीसरे दशमलव स्थान से गुणक के एकक वाले अंक को गुणा आरंभ करना चाहिए। गुणक के दशमलव वाले अंक से गुण्य के दशमलव के दूसरे स्थान से गुणा आरंभ करना चाहिए, इत्यादि। जिन अंक से गुणा करना आरंभ किया जाए उसके दाहिनी ओर वाले अंक के गुणा करके हाथ लगने वाली संख्या ले लेनी चाहिए। यह क्रिया निम्नलिखित उदाहरण स्पष्ट हो जाएगी: | ||
[[ चित्र:Equation6.gif|thumb|250px]] | [[ चित्र:Equation6.gif|thumb|250px]] | ||
424.33643 ´ 12.732 = 4243.3643 ´ 1.2732 | 424.33643 ´ 12.732 = 4243.3643 ´ 1.2732 | ||
Line 75: | Line 103: | ||
उदाहरणत: 34608 को 5387 से गुणा करने में क्रिया इतनी लिखी जाएगी: | उदाहरणत: 34608 को 5387 से गुणा करने में क्रिया इतनी लिखी जाएगी: | ||
[[ चित्र:Equation7.gif|thumb|250px]] | [[ चित्र:Equation7.gif|thumb|250px]] | ||
यहाँ गुणनफल का अंक २ योग 7 ´ 6 + 8 ´ 0 + 3 ´ 8 + हासिल के 6 का एकक वाला अंक है। अंत में गुणनफल में दशमलव इस प्रकार लगाया जाता है कि उसके दाहिनी ओर उतने ही अंक रहें जितने गुणक और गुण्य में मिलकर हों। | यहाँ गुणनफल का अंक २ योग 7 ´ 6 + 8 ´ 0 + 3 ´ 8 + हासिल के 6 का एकक वाला अंक है। अंत में गुणनफल में दशमलव इस प्रकार लगाया जाता है कि उसके दाहिनी ओर उतने ही अंक रहें जितने गुणक और गुण्य में मिलकर हों। | ||
इस दशमलव संख्या में दूसरी संख्या का भाग देने में सुविधा इसमें होती है कि भाजक से दशमलव हटा दिया जाए और भाज्य में दशमलव को भी उतने ही स्थान तक दाईं ओर हटा दिया जाए। इसके बाद साधारण रीति से भाग की क्रिया की जाती है। भागफल में दशमलव उस अंक के बाद लगेगा जो भाज्य में एकक वाले स्थान के अंक को उतार कर भाग देने पर मिलता है। | इस दशमलव संख्या में दूसरी संख्या का भाग देने में सुविधा इसमें होती है कि भाजक से दशमलव हटा दिया जाए और भाज्य में दशमलव को भी उतने ही स्थान तक दाईं ओर हटा दिया जाए। इसके बाद साधारण रीति से भाग की क्रिया की जाती है। भागफल में दशमलव उस अंक के बाद लगेगा जो भाज्य में एकक वाले स्थान के अंक को उतार कर भाग देने पर मिलता है। | ||
क्रिया निम्नलिखित उदाहरण से स्पष्ट हो जाएगी: | क्रिया निम्नलिखित उदाहरण से स्पष्ट हो जाएगी: | ||
63802¸ 73.1 = 6380.2¸731 | 63802¸ 73.1 = 6380.2¸731 | ||
[[चित्र:Equation8.gif|thumb|250px]] | [[चित्र:Equation8.gif|thumb|250px]] | ||
स्पष्ट हे कि शेष में दशमलव बिंदु को एकक स्थान से उतने ही स्थान बाईं ओर हटकर लगाना चाहिए जितने दशमलव स्थान पर अंतिम उतारा हुआ अंक मूल भाज्य में था। यहाँ अंतिम उतारा हुआ अंक 2 मूल भाज्य में दूसरे दशमलव स्थान पर था। अतएव शेष 2.05 है। | स्पष्ट हे कि शेष में दशमलव बिंदु को एकक स्थान से उतने ही स्थान बाईं ओर हटकर लगाना चाहिए जितने दशमलव स्थान पर अंतिम उतारा हुआ अंक मूल भाज्य में था। यहाँ अंतिम उतारा हुआ अंक 2 मूल भाज्य में दूसरे दशमलव स्थान पर था। अतएव शेष 2.05 है। | ||
उपर्युक्त क्रिया में भाज्य में 2 के आगो इच्छानुसार शून्य बढ़ाकर भागफल इच्छानुसार दशमलवों तक ज्ञात किया जा सकता है। | उपर्युक्त क्रिया में भाज्य में 2 के आगो इच्छानुसार शून्य बढ़ाकर भागफल इच्छानुसार दशमलवों तक ज्ञात किया जा सकता है। | ||
Line 86: | Line 124: | ||
दी हुई संख्या के दशमलव स्थान से आरंभ कर बाईं ओर और दाहिनी ओर दो-दो अंकों के जोड़े बना लें। अब संख्या के बाएँ सिरे पर प्रथम खंड या तो एक पूरा जोड़ा होगा या केवल एक अंक। 1 से 9 तक के वर्गों की सारणी से देखें कि यह खंड किन संख्याओं के वर्गों के बीच में है। छोटी संख्या को वर्गमूल में लिखें। इसके वर्ग को खंड से घटाएँ और शेष के आगे दूसरा खंड उतारें; यह दूसरा भाज्य है। भाजक के लिखे अब तक प्राप्त वर्गमूल का दूना लिखें और देखें कि उसके आगे दीर्घतम कौन-सा अंक ब बढ़ाया जाए कि बढ़ाने पर प्राप्त भाज्य का ब गुना दूसरे भाज्य से कम रहे। इस प्रकार वर्गमूल का दूसरा अंक ब हुआ। इसी प्रकार अन्य अंक ज्ञात करें। यह क्रिया ऊपर बगल में दिखाए गए उदाहरण से स्पष्ट हो जाएगी जिसमें 325.649 का वर्गमूल ज्ञात किया गया है। | दी हुई संख्या के दशमलव स्थान से आरंभ कर बाईं ओर और दाहिनी ओर दो-दो अंकों के जोड़े बना लें। अब संख्या के बाएँ सिरे पर प्रथम खंड या तो एक पूरा जोड़ा होगा या केवल एक अंक। 1 से 9 तक के वर्गों की सारणी से देखें कि यह खंड किन संख्याओं के वर्गों के बीच में है। छोटी संख्या को वर्गमूल में लिखें। इसके वर्ग को खंड से घटाएँ और शेष के आगे दूसरा खंड उतारें; यह दूसरा भाज्य है। भाजक के लिखे अब तक प्राप्त वर्गमूल का दूना लिखें और देखें कि उसके आगे दीर्घतम कौन-सा अंक ब बढ़ाया जाए कि बढ़ाने पर प्राप्त भाज्य का ब गुना दूसरे भाज्य से कम रहे। इस प्रकार वर्गमूल का दूसरा अंक ब हुआ। इसी प्रकार अन्य अंक ज्ञात करें। यह क्रिया ऊपर बगल में दिखाए गए उदाहरण से स्पष्ट हो जाएगी जिसमें 325.649 का वर्गमूल ज्ञात किया गया है। | ||
[[ चित्र:Equation9.gif|thumb|250px]] | [[ चित्र:Equation9.gif|thumb|250px]] | ||
इसके बाद हम 207400 की 3604 से भाग दे सकते हैं। | इसके बाद हम 207400 की 3604 से भाग दे सकते हैं। | ||
वर्गमूल निकालने की रीति से मिलती-जुलती रीति द्वारा घनमूल भी ज्ञात किया जा सकता है, किंतु लघुगणकों (लॉगैरिथ्म्स) के प्रयोग से सभी मूल सरलता से ज्ञात हो जाते हैं (नीचे देखें)। लघु गुणक सारणी उपलब्ध न होने पर हार्नर या न्यूटन की विधि से भी मूल ज्ञात किए जा सकते हैं (द्र. समीकरण सिद्धांत)। | वर्गमूल निकालने की रीति से मिलती-जुलती रीति द्वारा घनमूल भी ज्ञात किया जा सकता है, किंतु लघुगणकों (लॉगैरिथ्म्स) के प्रयोग से सभी मूल सरलता से ज्ञात हो जाते हैं (नीचे देखें)। लघु गुणक सारणी उपलब्ध न होने पर हार्नर या न्यूटन की विधि से भी मूल ज्ञात किए जा सकते हैं (द्र. समीकरण सिद्धांत)। |
Revision as of 05:29, 18 May 2018
अंकगणित (अँग्रेजी में अरिथमेटिक) गणित की वह शाखा है जिसमें केवल अंकों और संख्याओं से गणना की जाती है। इसमें न संकेताक्षरों का प्रयोग होता है और न ऋण संख्याओं का ही, किंतु अंकगणित के नियमों की व्याख्या में संकेताक्षरों का प्रयोग होने लगा है। बहुधा ऐसा माना गया है कि अंकगणित का विषय विस्तार अभिगणना (काम्प्युटेशन) तक सीमित है और विषय के प्रतिपादन में तर्क की विशेष महत्ता नहीं होती। अंकगणित का तर्कयुक्त विवेचन एक अलग विषय है जिसे संख्या सिद्धांत (थ्योरी ऑव नंबर्स) कहते हैं। कुछ गणितज्ञ अब अंकगणित और संख्या सिद्धांत को समानार्थक मानने लगे हैं। दो समूहों में वस्तुओं की संख्या तब समान कही जाती है जब एक समूह की प्रत्येक वस्तु के लिए दूसरे समूह में एक जोड़ीदार वस्तु मिल सके। इस प्रकार यदि अनुक्रम 1, 2, 3, . . ., म की प्रत्येक संख्या की जोड़ी किसी समूह की एक-एक वस्तु से बनाई जा सके तो उस समूह में वस्तुओं की संख्या म है। इस संख्या का ज्ञान प्राप्त करना वस्तुओं की गणना करना, अर्थात् गिनना, कहा जाता है। गिनने की विधि से जो संख्याएँ मिलती हैं उन्हें प्राकृतिक संख्याएँ अथवा पूर्ण संख्याएँ कहते हैं।
घन पूर्ण संख्या संबंधी मूल नियम: यदि एक समूह में क वस्तुएँ और दूसरे समूह में ख वस्तुएँ हैं तो दोनों समूहों में मिलकर क + ख वस्तुएँ हैं। क + ख को क और ख का योगफल, अथवा योग, बनाते हैं। योगफल ज्ञात करने को जोड़ना कहते हैं। चिह्न + ख को धन कहते हैं। गिनने की प्रक्रिया से स्पष्ट है कि योग के लिए निम्नलिखित मूल नियम ठीक है: योग का क्रम विनिमेय (कंप्यूटेटिव) नियम: क + ख = ख + क। योग का साहचर्य (ऐसोशिएटिव) नियम: क + ख = (ख + ग) = (क + ख) + ग। यदि च कोई ऐसी घन पूर्ण संख्या है कि क = ख+ च, तो कहा जाता है कि क, ख से बड़ी है (और इस क > ख लिखते हैं); साथ ही ख, क से कम है (और इसे ख < क लिखते हैं। इस प्रकार यदि क और ख कोई दो धन पूर्ण संख्याएँ हैं तो या तो क = ख, या क > ख या क < ख। धन पूर्ण संख्याओं में यह गुण हैं कि किन्हीं दो या दो से अधिक ऐसी संख्याओं का योग धन पूर्ण संख्या ही होता है, अर्थात् यदि क और ख हो धन पूर्ण संख्याएँ हैं तो एक ऐसी धन पूर्ण संख्या ग अवश्य है कि क + ख = ग। स्पष्ट है कि ग > क। यदि क+ ख = ग, और संख्याएँ क और ग दी हुई हैं तो ख का मान ग से क को घटाकर ज्ञात किया जाता है। इस क्रिया को व्यवकलन कहते हैं और लिखते हैं ख = ग__क। चिह्न- को ऋण पढ़ा जाता है। पूर्वोक्त नियमों से स्पष्ट है कि एक से अधिक संख्याएँ चाहे जिस क्रम से जोड़ी जाएँ, उनके योगफल में कोई अंतर नहीं पड़ता। अतएव 4 + 4 + 4 के समान पुनरागत योग को 4´ 3 लिख सकते हैं, जहाँ संख्या 3 यह बतलाती है कि 4 कितनी बार लिया गया है। इसे 4 गुणित 3 कहते हैं और इस क्रिया को गुणन, अर्थात् गुणा करना, कहते हैं। 4´ 3 के परिणाम को गुणनफल कहते हैं। इसमें संख्या 4, जो बार-बार जोड़ी गई संख्या हैं, गुण्य हैं; और संख्या 3, अर्थात् जितनी बार 4 जोड़ा गया है, गुणक हैं। यदि हम संख्याओं को संकेताक्षरों से प्रकट करें तो गुणनफल क´ ख को प्राय: क, ख या केवल कख लिखा जाता है। योग की भाँति ही गुणन क्रिया के लिए निम्नलिखित नियम ठीक हैं: 1. गुणन का क्रम विनिमेय नियम: क´ ख =ख´ क; 2. गुणन का साहचर्य नियम: क (ख´ ग) = (क´ ख) ग। पहले नियम की सत्यता की जाँच के लिए क पंक्तियों में से प्रत्येक में ख गोलियाँ इस प्रकार रखें कि सब पंक्तियों की पहली गोलियाँ एक सीध में रहें, दूसरी गोलियाँ एक सीध में, इत्यादि। इस प्रकार ख स्तंभ मिलेंगे, जिनमें से प्रत्येक में क गोलियाँ हैं। स्तंभों के हिसाब से कुल गोलियों की संख्या म: क ´ ख है और पंक्तियों के हिसाब से ख´ क; किंतु गोलियाँ कुल मिलकर दोनों बार उतनी ही हैं; इसीलिए क´ ख =ख´ क। दूसरे नियम की सत्यता की जाँच के लिए ख समूहों में से प्रत्येक में ग स्तंभ रहें और प्रत्येक स्तंभ में क गोलियाँ। ये समूह एक के नीचे एक रखे जाएँ। इस प्रकार ग स्तंभ बनेंगे और प्रत्येक में क´ ख गोलियाँ रहेंगी। इससे प्रत्यक्ष है कि कुल गोलियों की संख्या (क´ ख) ´ ग है। अब ये समूह इस प्रकार रखे जाएँ कि इनकी पहली पंक्तियाँ सब एक सीध में रहैं, उनके नीचे सब समूहों की दूसरी पंक्तियाँ एक सीध में रहें, इत्यादि। इस प्रकार प्रत्येक पंक्ति में सब समूहों को मिलाकर ख´ ग गोलियाँ रहैंगी और उन गोलियों की ऐसी पंक्तियाँ क होंगी। इसलिए अब गोलियों की संख्या = क ´ (ख´ ग)। गोलियों की संख्या वही रहती है; इसलिए क ´ (ख x ग) = (क´ ख) ´ ग। इन दो नियमों के अतिरिक्त गुणन क्रिया के लिए निम्नांकित नियम भी हैं: 3. वितरण नियम: (क+ ख) ग = कग + खग; इसकी सत्यता की जाँच गोलियों से पूर्ववत् की जा सकती है। अन्य नियम घात संबंधी हैं। जिस प्रकार च बार पुनरागत योग क+ क+ . . . + क को चक लिखा जाता है, उसी प्रकार च बार पुनरागत गुणनफल क´ क ´ . . . ´ क को क लिखा जाता है। च को घातांक या केवल घात और क को आधार कहते हैं। परिभाषा से घात संबंधी निम्नलिखित नियमों की सत्यता स्पष्ट है: 4. कच ´ कछ = कच + छ; 5. (कच)छ = कच+ छ; 6. कच खछ = (कख)छ। यदि क और ख कोई दो धन पूर्ण संख्याएँ हैं तो क x ख भी कोई धन पूर्ण संख्या ग होगी। यदि ग ऐसी संख्या दी हुई है जो दो संख्याओं के गुणनफल के बराबर है और उनमें से एक संख्या क ऐसी ज्ञात है जो शून्य से भिन्न है, तो दूसरी संख्या ख का मान ग को क से विभाजित करने पर प्राप्त होता है। हम लिखते हैं:
ख = ग ¸ क अथवा ग/ क, अथवा ग/ क।
चिह्न भाग का चिह्न कहते हैं और भाजित पढ़ते हैं। चिह्न / को बटा या बटे पढ़ते हैं। उदाहरणार्थ:, 8 भाजित 4 (अर्थात् 8¸ 4) 2; अथवा 8/4 अर्थात् = 2। विभाजन के लिए घात संबंधी नियम यह है: 7. क ¸क = क, जहाँ म > स। परिभाषा से इसकी सत्यता की जाँच करना सरल है। भाजक सिद्धांत__यदि तीन धन पूर्ण संख्याओं कख = ग में संबंध कख ग है, तो क और ख को ग के भाजक अथवा गुणनखंड कहते हैं। कभी-कभी इतना कहना पर्याप्त समझा जाता है कि क, ग को विभाजित करता है। ग, क का अपवर्त्य अथवा गुणज कहलाता है, और क, ग का अपवर्तक। संख्या 1 एकक कहलाती है और स्पष्ट है कि यह प्रत्येक पूर्ण संख्या का भाजक है तथा प्रत्येक संख्या स्वयं अपना भाजक है। यदि ग = कख, और क तथा ख में से प्रत्येक 1 से बड़ी है, तो ग को संयुक्त संख्या कहते हैं, अन्यथा अभाज्य संख्या। उदाहरणत:, 2, 3, 5, 7, 11, 13, अभाज्य संख्याएँ हैं। यूक्लिड ने एलिमेंट्स, खंड 9, साध्य 20, में सिद्ध कर दिया है कि अभाज्य संख्याएँ गिनती में अनंत है। उसने यह भी सिद्ध किया था कि प्रत्येक संयुक्त संख्या को अभाज्य संख्याओं के गुणनफल के रूप में प्रदर्शित करने की, उनके क्रम में हेरफेर को छोड़ना केवल एक ही विधि है। धन पूर्ण संख्याओं क1 क2 . . . कम के समान प्रत्येक परिमित संघ के लिए एक ऐसी सबसे बड़ी पूर्ण संख्या म रहती है जिनसे सब की प्रत्येक संख्या पूरा-पूरी विभाजित हो सकती है। इस संख्या को महत्तम समापवर्तक (म.स.) कहते हैं। यदि म = 1, तो संख्याएँ एक-दूसरे के सापेक्ष अभाज्य कहलाती हैं। प्रत्येक संख्या संघ के लिए सबसे छोटी एक ऐसी संख्या भी होती है जो संघ की प्रत्येक संख्या से विभाज्य होती है। इस संख्या को लघुत्तम समापवर्त्य (ल.स.) कहते हैं। म.स. और ल.स. ज्ञात करने की एक विधि में संख्याओं को अभाज्य संख्याओं के गुणनफलों के रूप में प्रकट करना होता है (विधि का वर्णन अंकगणित की प्राय: सभी पुस्तकों में मिल जाएगा)। उदाहरण के लिए यदि संख्याएँ @52, 420, 1176 हों, तो 252 = 22, 32, 7, 420 = 22, 3, 5, 7, 1176 = 23, 3, 72 इसलिए इसका म.स. = 22, 3, 7= 84 है और ल.स. = 23, 32, 5, 72 = 17, 640। दो संख्याओं का, बिना उनके गुणनखंड किए, म.स. ज्ञात करने की एक विधि विभाजन की है। इसमें पहले छोटी संख्या से बड़ी संख्या को भाग दिया जाता है, फिर शेष से छोटी को, अर्थात् पूर्वगामी भाजक को; यही क्रम तब तक चलता रहता है जब तक शेष शून्य न आ जाए। अंतिम भाजक अभीष्ट म.स. है। इस विधि का आविष्कार भी यूक्लिड ने किया था। उदाहरणार्थ, 252, 420 के लिए क्रिया यह होगी: इस प्रकार अभीष्ट म.स. 84 है। संक्षिप्त रूप में इसे इस प्रकार लिख सकते हैं: thumb|250px
इस प्रकार अभीष्ट में म.स. ८४ है। संक्षिप्त रूप में इसे इस प्रकार लिख सकते हैं: thumb|250px
अंतिम और प्रथम स्तंभों में क्रमानुसार भागफल और भाजक हैं।
दो संख्याओं का गुणनफल उनके म.स. और ल.स. के गुणनफल के बराबर होता है। म.स. ज्ञात होने पर, इस नियम से, उन संख्याओं का बिना गुणनखंड किए ल.स. ज्ञात किया जा सकता है।
साधारण भिन्न__भिन्न 1/क का अर्थ है वह संख्या जिसको क से गुणा करने पर १ प्राप्त होता है। यहाँ क कोई धन पूर्ण संख्या है। ग 1/क को ग/क अथवा ग/क लिखते हैं। ग/क को साधारण भिन्न कहते हैं। इसे वह भागफल माना जा सकता है जो ग को क से भाग देने पर मिलता है। ग और क भिन्न के दो अवयव हैं। ग को अंश (न्यूमरेटर) और क को हर (डिनामिनेटर) कहते हैं। जब ग क, तो ग/क को उचित भिन्न कहते हैं, अन्यथा अनुचित भिन्न। जब ग और क परस्पर अभाज्य हों, अर्थात् ऐसी कोई संख्या न हो जो दोनों को विभाजित कर सके, तो भिन्न ग/क का रूप लघुत्तम पदों वाला कहा जाता है। भिन्नों के योग, व्यवकलन, गुणन, भाजन, आदि के लिए भिन्न शीर्षक लेख देखें।
अपरिमेय संख्याएँ__पूर्ण संख्याओं और साधारण भिन्नों को परिवेश संख्या कहते हैं। जो संख्या पूर्ण न हो और साधारणत: भिन्न के रूप में प्रकट न की जा सके वह अपरिमेय संख्या कहलाती है, जैसे Ö२, p। इनका विवेचन संख्या नामक लेख में मिलेगा।
दशमलव पद्धति__प्रचलित संख्या पद्धति को, जिसमें एक सौ तेईस को 123लिखा जाता है, दशमलव पद्धति कहते हैं। CXXIII दशमलव पद्धति में नहीं है, रोमन पद्धति में है। दशमलव पद्धति अपनाने पर ही अंकगणित की चारों क्रियाओं की सरल विधियाँ प्रयोग में आने लगीं। (इस पद्धति का, तथा अन्य पद्धतियों का, विवरण संख्यांक पद्धतियाँ शीर्षक लेख में मिलेगा)। दशमलव पद्धति में संख्या को वस्तुत: 10 के घातों की सहायता से व्यंजित किया जाता है। उदाहरणत:
3467 = 3.103 + 4.102 + 6.10 + 7।
प्रत्येक घात का गुणांक 0 से 9 तक (इन दस संख्याओं) में से कोई भी हो सकता है। बड़ी संख्याओं का एकक स्थान के अंक से आरंभ कर तीन-तीन अंकों के आवर्तकों में बाँटने की प्रथा पाश्चात्य है। भारतीय प्रथा में एकक अंक के आरंभ कर पहले तीन अंकों का एक आवर्तक और बाद में दो-दो अंकों के आवर्तक बनाए जाते हैं। उदाहरणत: 2306472 को पाश्चात्य प्रथा के अनुसार 2,306,472 लिखते हैं; भारतीय प्रथा में 23,06,472। ऐसा करने का कारण स्पष्ट है। भारतीय गणना में सौ हजार का एक लाख, सौ लाख का 1 करोड़ इत्यादि होता है। पाश्चात्य प्रथा में 10 लाख को एक मिलियन कहते हैं। अमरीका और फ्रांस में हजार मिलियन (एक अरब) को बिलियन कहते हैं, परंतु इंग्लैंड में मिलियन मिलियन (= दस खरब) को बिलियन कहते हैं। इन दशमलव पद्धति के प्रयोग द्वारा वे भिन्नें भी लिखी जा सकती हैं जिनका हर 10 का कोई घात हो; यथा: thumb|250px
= 35 + 7 ´ 10.1+ 0 ´ 10-2+6 ´ 10-3+4 ´ 10-4
अर्थात् दशमलव बिंदु के दाईं ओर के पहले अंक को 10-1 से गुणा करके दशमलव के बाईं ओर की पूर्ण संख्या में जोड़ना होता है। दूसरे को 10-2 से गुणा कर पहले के योग में जोड़ते हैं और इसी प्रकार अन्य अंकों को भी गुणा करके जोड़ना पड़ता है। दशमलव में योग और व्यवकलन-दशमलव पद्धति में योग ज्ञात करने की निम्नांकित पद्धति अब प्राय: सर्वमान्य है। संख्याओं को एक के नीचे एक इस प्रकार लिखना चाहिए कि दशमलव बिंदु सब एक स्तंभ में अर्थात् एक के नीचे एक रहें। इस प्रकार एकक के सभी अंक एक स्तंभ में पड़ेंगे, दहाई के स्थान वाले अंक एक अन्य स्तंभ में, इत्यादि; उदाहरणत: 53.76, 236081, 408346 का योग यों निकलेगा: thumb|250px
स्पष्ट है कि दशमलवों का योग साधारण जोड़ के समान ही है। ऊपर की क्रिया वस्तुत: निम्नलिखित का संक्षिप्त रूप है:
5 ´ 10 + 3+ 7 ´ 10-1+ 6 ´ 10-2
2 ´ 102+ 3 ´ 10+ 6 + 0 ´ 10-1+ 8 ´ 10-2+ 1 ´ 10-3
4 ´ 102+ 0 ´ 10 + 8 + 3 x 10-1+ 4 ´ 10-2+ 6 ´ 10-3
= 6 ´ 102+ 8 ´ 10+ 17 + 10 ´ 10-1+ 18 ´ 10-2+ 7 ´ 10-3 = 6 ´ 102+ 9 ´ 10+ 8 + 1 ´ 10-1+ 8 ´ 10-2+ 7 ´ 10-3
व्यवकलन के लिए पूर्वोक्त क्रिया को उलटना होता है। बड़ी संख्या को ऊपर और छोटी को नीचे इस प्रकार लिखना चाहिए जिसमें दशमलव बिंदु एक-दूसरे के thumb|25px
नीचे रहें; फिर साधारण रीति से घटाना चाहिए। शेष में दशमलव बिंदु को ऊपर लिखी संख्याओं के दशमलव बिंदुओं के ठीक नीचे रखना चाहिए, जैसा बगल में दिखाया गया है। गुणा करने की विधि वितरण नियम पर आधारित है और अंकगणित की अधिकांश पुस्तकों में इसका वर्णन मिल जाएगा। यदि दो दशमलव संख्याओं का सन्निकट गुणनफल, मान लें; दशमलव स्थानों तक शुद्ध, ज्ञात करना है, तो सुगमता इसमें है कि इसमें से एक संख्या का (जिसे गुणक कहेंगे) दशमलव बाईं ओर या दाहिनी ओर हटाकर उस संख्या को 1 और 10 के बीच में लाया जाए, फिर उतने ही स्थान विपरीत दिशा में दूसरी संख्या का (जिसे गुण्य कहेंगे) दशमलव भी हटाया जाए तब गुण्य के तीसरे दशमलव स्थान से गुणक के एकक वाले अंक को गुणा आरंभ करना चाहिए। गुणक के दशमलव वाले अंक से गुण्य के दशमलव के दूसरे स्थान से गुणा आरंभ करना चाहिए, इत्यादि। जिन अंक से गुणा करना आरंभ किया जाए उसके दाहिनी ओर वाले अंक के गुणा करके हाथ लगने वाली संख्या ले लेनी चाहिए। यह क्रिया निम्नलिखित उदाहरण स्पष्ट हो जाएगी: thumb|250px
424.33643 ´ 12.732 = 4243.3643 ´ 1.2732
दशमलव बिंदु के बाद आने वाले स्थान में 1 हो तो वह वस्तुत: 1/10 बराबर है, उसके बाद वाले स्थान में 1 हो तो वह वस्तुत: 1/100 के बराबर है, इत्यादि। इससे स्पष्ट है कि दशमलव अंक के बाद बहुत से अंकों के रखने की आवश्यकता व्यवहार में नहीं पड़ती, क्योंकि अंकों को मान उत्तरोत्तर शीघ्रता से घटता जाता है। इसीलिए बहुधा दशमलव के पश्चात् इसके तीसरे या चौथे स्थान के बाद के सब अंक को छोड़ दिए जाते हैं; परंतु यदि छोड़े हुए अंकों में से पहला अंक 5 या 5 से बड़ा हो तो रखे गए अंकों में से आरंभ अंक में 1 जोड़ दिया जाता है, क्योंकि तब उत्तर अधिक शुद्ध हो जाता है। एक पंक्ति में गुणन__जो व्यक्ति मौखिक योग में प्रवीण हो, यह एक पंक्ति में दो संख्याओं का गुणनफल निकाल सकता है। मान लें दशमलव पर ध्यान न देते हुए गुण्य में एकक के स्थान में अंक क, है, दहाई (दशम) के स्थान में क२, इत्यादि, और गुणक में इन स्थानों के अंक क्रमानुसार ख१, ख२, इत्यादि है। मान लें: क1ख1= 10 ह1+ ग1, क1ख2 + क2ख1, + ह1= 10 ह2+ ग2, क1ख3 + क2ख2, क3ख1+ ह1= 10 ह3+ ग3, इत्यादि, जहाँ ग1, ग2, . . . प्रत्येक 10 से कम है; तो गुणनफल के एकक के स्थान में ग1, दहाई के स्थान में ग2, सैकड़े के स्थान में ग3 .. . होंगे। वास्तविक प्रक्रिया में सुगमता इसमें होती है कि गुणक को उलटकर लिए लिया जाए। तब समांतर रेखाओं में स्थित अंकों के मौखिक गुणनफल का योग ज्ञात करना होता है: उदाहरणत: 34608 को 5387 से गुणा करने में क्रिया इतनी लिखी जाएगी: thumb|250px
यहाँ गुणनफल का अंक २ योग 7 ´ 6 + 8 ´ 0 + 3 ´ 8 + हासिल के 6 का एकक वाला अंक है। अंत में गुणनफल में दशमलव इस प्रकार लगाया जाता है कि उसके दाहिनी ओर उतने ही अंक रहें जितने गुणक और गुण्य में मिलकर हों। इस दशमलव संख्या में दूसरी संख्या का भाग देने में सुविधा इसमें होती है कि भाजक से दशमलव हटा दिया जाए और भाज्य में दशमलव को भी उतने ही स्थान तक दाईं ओर हटा दिया जाए। इसके बाद साधारण रीति से भाग की क्रिया की जाती है। भागफल में दशमलव उस अंक के बाद लगेगा जो भाज्य में एकक वाले स्थान के अंक को उतार कर भाग देने पर मिलता है। क्रिया निम्नलिखित उदाहरण से स्पष्ट हो जाएगी: 63802¸ 73.1 = 6380.2¸731 thumb|250px
स्पष्ट हे कि शेष में दशमलव बिंदु को एकक स्थान से उतने ही स्थान बाईं ओर हटकर लगाना चाहिए जितने दशमलव स्थान पर अंतिम उतारा हुआ अंक मूल भाज्य में था। यहाँ अंतिम उतारा हुआ अंक 2 मूल भाज्य में दूसरे दशमलव स्थान पर था। अतएव शेष 2.05 है। उपर्युक्त क्रिया में भाज्य में 2 के आगो इच्छानुसार शून्य बढ़ाकर भागफल इच्छानुसार दशमलवों तक ज्ञात किया जा सकता है। वर्गमूल__वर्गमूल ज्ञात करने की क्रिया निम्नलिखित सूत्र पर आधारित हैं: (क+ ख)2 = (क+2ख) क1+ख२ दी हुई संख्या के दशमलव स्थान से आरंभ कर बाईं ओर और दाहिनी ओर दो-दो अंकों के जोड़े बना लें। अब संख्या के बाएँ सिरे पर प्रथम खंड या तो एक पूरा जोड़ा होगा या केवल एक अंक। 1 से 9 तक के वर्गों की सारणी से देखें कि यह खंड किन संख्याओं के वर्गों के बीच में है। छोटी संख्या को वर्गमूल में लिखें। इसके वर्ग को खंड से घटाएँ और शेष के आगे दूसरा खंड उतारें; यह दूसरा भाज्य है। भाजक के लिखे अब तक प्राप्त वर्गमूल का दूना लिखें और देखें कि उसके आगे दीर्घतम कौन-सा अंक ब बढ़ाया जाए कि बढ़ाने पर प्राप्त भाज्य का ब गुना दूसरे भाज्य से कम रहे। इस प्रकार वर्गमूल का दूसरा अंक ब हुआ। इसी प्रकार अन्य अंक ज्ञात करें। यह क्रिया ऊपर बगल में दिखाए गए उदाहरण से स्पष्ट हो जाएगी जिसमें 325.649 का वर्गमूल ज्ञात किया गया है। thumb|250px
इसके बाद हम 207400 की 3604 से भाग दे सकते हैं। वर्गमूल निकालने की रीति से मिलती-जुलती रीति द्वारा घनमूल भी ज्ञात किया जा सकता है, किंतु लघुगणकों (लॉगैरिथ्म्स) के प्रयोग से सभी मूल सरलता से ज्ञात हो जाते हैं (नीचे देखें)। लघु गुणक सारणी उपलब्ध न होने पर हार्नर या न्यूटन की विधि से भी मूल ज्ञात किए जा सकते हैं (द्र. समीकरण सिद्धांत)। लघुगणक__यदि क तथा अ धन संख्याएँ हैं और अल = क, तो ल को आधार अ के सापेक्ष क का लघुगुणक कहते हैं, और क के ल का प्रति लघुगणक। लिखते हैं: ल = लघु, क। जब अ = 10 तब साधारण लघुगणक प्राप्त होते हैं, और यदि अ = ई (=2.71828. . .) तो नेपिरीय लघुगणक मिलते हैं। साधारण लघुगणकों की मुद्रित सारणियाँ बिकती हैं। सूत्र लघु (क xख) = लघु क लघु ख के प्रयोग से गुणन क्रिया योग क्रिया में परिवर्तित हो जाती हैं, क्योंकि यदि गुणनफल कख ज्ञात करना है तो लघु क और ख के योग से लघु (कख) प्राप्त होता है, और इसका प्रतिलघुगणक अभीष्ट गुणनफल कख है। यहाँ सब लघुगणकों का आधार 10 है। विशेष जानकारी के लिए लघुगणक शीर्षक लेख देखें। ऐकिक नियम__यदि किसी प्रकार की एक वस्तु के लिए कोई राशि तौल, मूल्य, आदि) ख हो तो उसी प्रकार की क वस्तुओं के लिए यह राशि ख की गुणा करने पर प्राप्त होता है। विलोमता इसी नियम से यदि क समान वस्तुओं के लिए सीमित राशि स हो इसी प्रत्येक के लिए यह राशि स, क होगी। इस नियमों के आधार पर क वस्तुओं का मूल्य अंक ज्ञान रहने पर हम ख वस्तुओं को मूल्य आदि ज्ञात कर सकते हैं। इस क्रिया में लगने वाले नियमों को एकक नियम कहते हैं। यह नाम इसीलिए पड़ा कि इस रीति से पहले एक वस्तु के लिए उपयुक्त राशि ज्ञात करनी होती है। त्रैराशिक__यदि क वस्तुओं का मूल्य ख है या ग वस्तुओं का मूल्य कितना होगा, ऐसे प्रश्नों का त्रैराशिक के नियम से भी हल किया जा सकता है। नियम का नाम त्रैराशिक इसलिए पड़ा कि इसमें क, ख, ग में तीन राशियाँ आती है। त्रैराशिक नियम का आविष्कार भारतीयों ने किया। ब्रह्मगुप्त तथा भास्कर न हो वस्तुत इसका त्रैराशिक नाम दिया। शताब्दियों तक व्यापारियों के लिए यह अत्यंत महत्वपूर्ण नियम रहा। अंकगणित के यूरोपीय लेखे पहले पर्याप्त विस्तार से इस नियम की व्याख्या करते थे। यह नियम समानुपात के सिद्धांत पर आश्रित है। इसे विस्तारपूर्वक समझाने के लिए यहाँ पर्याप्त स्थान नहीं है। केवल भास्कर की लीलावती से एक उदाहरण यहाँ दिया जाता है। यदि ढाई पल केशर का मूल्य 3/7 निष्क है तो 9 निष्क कितनी केसर का मूल्य होगा? त्रैराशिक नियम से उत्तर = 9 x 5/2 5/7= 52 ½ पल। भास्कर ने पंचराशिक, सप्तराशिक आदि नियम भी बताए हैं। अनुपात__भिन्न क/ख को क और ख का अनुपात, अथवा क का ख से अनुपात भी कह सकते हैं और अनुपात को क:ख रूप में भी लिखते हैं। चार संख्याएँ क, ख, ग, घ तथा समानुपात में कही जाती है जब क:ख = ग:घ। समानुपात को क : ख :: ग : घ भी लिखते हैं। क, घ समानुपात के अंतिम पद और ख, ग मध्य पद हैं। स्पष्ट है कि क x घ= ख x ग। तीन संख्याएँ क, ख, ग तब गुणोत्तर अनुपात में कही जाती है जब क: ख: ग:: ख: ग, अर्थात् कग = ख2। गणना यंत्र__अंकगणितीय अभिगनना के लिए अब भाँति-भाँति के गणना यंत्र बन गए हैं जिनसे जटिल अभिगणनाएँ भी शीघ्र हो जाती है। इनका विस्तृत विवरण विवरण गणना यंत्र नामक लेख में मिलेगा। सं. ग्रं. __निकोमेकस ऑव गेरेसा: इंट्रोडक्शन टु अरिथमेटिक, अनुवादक एम.एस. डीओग और एफ.ई. रॉबिंस; एस.सी. कापिंस्की: स्टडीज़ इन ग्रीक अरिथमेटिक (यूनिवर्सिटी ऑव मिलियन प्रेस) 1938; डी.ई. स्मिथ: ए सोर्स-बुक इन मैथिमेटिक्स; विभूति भूषण दत्त और अवधेश नारायण सिंह: हिस्ट्री ऑव हिंदू मैथिमेटिक्स; एच.डी. लारसेन: अरिथमेटिक फ़ॉर कॉलेजेज़। (हरिचंद्र गुप्त)
|
|
|
|
|
टीका टिप्पणी और संदर्भ
संबंधित लेख