प्रयोग:Luke2: Difference between revisions
Jump to navigation
Jump to search
m (' <math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\inf...' के साथ नया पन्ना बनाया) |
mNo edit summary |
||
Line 4: | Line 4: | ||
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | ||
</math> | </math> | ||
[[File:test.ogg]] |
Revision as of 23:23, 8 October 2010
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): \operatorname {erfc}(x)={\frac {2}{{\sqrt {\pi }}}}\int _{x}^{{\infty }}e^{{-t^{2}}}\,dt={\frac {e^{{-x^{2}}}}{x{\sqrt {\pi }}}}\sum _{{n=0}}^{\infty }(-1)^{n}{\frac {(2n)!}{n!(2x)^{{2n}}}}