प्रयोग:Luke2

भारत डिस्कवरी प्रस्तुति
Revision as of 01:31, 25 July 2010 by Luke (talk | contribs) (' <math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\inf...' के साथ नया पन्ना बनाया)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): \operatorname {erfc}(x)={\frac  {2}{{\sqrt  {\pi }}}}\int _{x}^{{\infty }}e^{{-t^{2}}}\,dt={\frac  {e^{{-x^{2}}}}{x{\sqrt  {\pi }}}}\sum _{{n=0}}^{\infty }(-1)^{n}{\frac  {(2n)!}{n!(2x)^{{2n}}}}