अनुरूपी निरूपण: Difference between revisions

भारत डिस्कवरी प्रस्तुति
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
(''''अनुरूपी निरूपण''' एक तल पर बनी किसी आकृति को दूसरे क...' के साथ नया पृष्ठ बनाया)
 
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 29: Line 29:


इसी प्रकार यदि हम श, ष समतल में दो रेखापुंज लें : श=ग, ष=घ जो समकोणीय हैं, तो य, र समतल और आयताकार अतिपरवलय य2-र2=ग और 2यर=घ उनकी संगत आकृतियाँ होंगी। स्पष्ट है कि इस निरूपण में भी आकृतियों के कोणगुण अक्षुण्ण बने रहते हैं।<ref>{{पुस्तक संदर्भ |पुस्तक का नाम=हिन्दी विश्वकोश, खण्ड 1|लेखक= |अनुवादक= |आलोचक= |प्रकाशक= नागरी प्रचारिणी सभा, वाराणसी|संकलन= भारत डिस्कवरी पुस्तकालय|संपादन= |पृष्ठ संख्या=125 |url=}}</ref>
इसी प्रकार यदि हम श, ष समतल में दो रेखापुंज लें : श=ग, ष=घ जो समकोणीय हैं, तो य, र समतल और आयताकार अतिपरवलय य2-र2=ग और 2यर=घ उनकी संगत आकृतियाँ होंगी। स्पष्ट है कि इस निरूपण में भी आकृतियों के कोणगुण अक्षुण्ण बने रहते हैं।<ref>{{पुस्तक संदर्भ |पुस्तक का नाम=हिन्दी विश्वकोश, खण्ड 1|लेखक= |अनुवादक= |आलोचक= |प्रकाशक= नागरी प्रचारिणी सभा, वाराणसी|संकलन= भारत डिस्कवरी पुस्तकालय|संपादन= |पृष्ठ संख्या=125 |url=}}</ref>


{{लेख प्रगति|आधार=|प्रारम्भिक=प्रारम्भिक1|माध्यमिक= |पूर्णता= |शोध= }}
{{लेख प्रगति|आधार=|प्रारम्भिक=प्रारम्भिक1|माध्यमिक= |पूर्णता= |शोध= }}
Line 36: Line 35:
<references/>
<references/>
==संबंधित लेख==
==संबंधित लेख==
[[Category:भौतिक विज्ञान]][[Category:भौतिक शब्दावली]][[Category:विज्ञान कोश
{{गणित}}
[[Category:हिन्दी विश्वकोश]]
[[Category:गणित]][[Category:ज्यामिति]][[Category:हिन्दी विश्वकोश]][[Category:विज्ञान कोश]]
__INDEX__
__INDEX__
__NOTOC__

Latest revision as of 09:04, 14 February 2021

अनुरूपी निरूपण एक तल पर बनी किसी आकृति को दूसरे के लिए दूसरी आकृति में एक ही संगत बिंदू हो, और इसके अतिरिक्त, दोनों आकृतियों के संगतकोण बराबर हो, अनुरूपी निरूपण (कन्फॉर्मल रिप्रेजेंटेशन) कहते है, क्योंकि इसमें एक आकृति का दूसरी आकृति में इस प्रकार निरूपण होता है कि दोनों आकृतियों के छोटे छोटे भाग अनुरूप (सिमिलर) बने रहते हैं।

मान लीजिए, एक तल में क ख ग एक त्रिभुज है और दूसरे तल में कि, खि, गि संगत त्रिभुज है। यह आवश्यक नहीं है कि त्रिभुजों की भुजाएँ ऋजु रेखाएँ हों तो भी, जब त्रिभुजों के आकार बहुत छोटे हो जाएँगे, हम उन्हें ऋजु रेखाओं के सदृश ही मान सकते हैं।

center|

जब बिंदु ख, ग बिंदु क की ओर प्रवृत्त होंगे, तब संगत बिंदु खि, गि बिंदु कि की ओर प्रवृत्त होंगे। यद निरूपण अनुरूपी हो तो अंत में त्रिभुज क ख ग और कि खि गि के संगत कोण समान हो जाएँगे और संगत भुजाएँ अनुपाती हो जाएँगी। अत: जो दो वक्र क पर मिलते हैं, उनका मध्यस्थ कोण उन दो वक्रों के मध्यस्थ कोण के बराबर होगा जो कि पर मिलते हैं।

अनुरूपी निरूपण का सबसे प्रसिद्ध प्रयोग मर्केटर प्रक्षेप कहलाता है। जिसके द्वारा भूमंडल की आकृतियों का चित्रण समतल पर किया जाता है (द्र. 'मर्केटर प्रक्षेप')।

लैंबर्ट ने सन्‌ 1772 में उक्त प्रश्न का अधिक व्यापक रूप से अध्ययन किया। पीछै लैंग्रांज ने बताया कि इस विषय का संमिश्र चर के फलनों (फंकशंस ऑव ए कंप्लेक्स वेरिएबुल) से क्या संबंध है। सन्‌ 1822 में कोपिनहैगन की विज्ञान परिषद् ने एक पुरस्कार के लिए यह विषय प्रस्तावित किया कि एक तल के विभिन्न भाग दूसरे तल पर इस कैसे चित्रित किए जाएँ कि प्रतिबिंब के छोटे से छोटे भाग मौलिक तल के संगत भागों के अनुरूप हों? गाउस ने सन्‌ 1825 में इस समस्या क हल निकाला और वहीं से इस विषय के व्यापक सिद्धांत का आरंभ हुआ। पिछले 50 वर्षों में इस क्षेत्र के अन्य कार्यकर्ताओं में रीमान, श्वार्ज,और क्लाइन उल्लेखनीय हैं।

मान लीजिए कि स=श (य, र)+श्रष (य, र) संमिश्र राशि ल=य+श्रर का एक वैश्लेषिक फलन है, जिसमें श्र=Ö (-1)। यह सरलता से सिद्ध किया जा सकता है कि फलन की वैश्लेषिकता के लिए आवश्यक और पर्याप्त शर्तें ये हैं:

center|

इन समीकरणों का कोशी रीमान समीकरण कहते हैं। जब ये समीकरण संतुष्ट हो जाते है तब, यदि हम य, र समतल की किसी आकृति का निरूपण श, ष समतल करें, तो निरूपण अनुरूपी होगा और कोणों में कोई परिवर्तन नहीं होगा। इसके लिए यह आवश्यक है कि दोनों फलन श तथा ष सतत हों और उनके चारों आंशिक अवकल गुणक

center|

भी सतत हों। आकृतियों की अनुरूपता केवल उन बिंदुओं पर टूटेगी जहाँ उपरिलिखित चारों अवकल गुणक शून्य हो जाएँगे।

उदाहरण के लिए हम कोई भी वैष्लेषिक फलन स=फ (ल) लें सकते है, जैसे ल2, कोज्या ल अथवा ज्या ल। यदि हम स=ल2 (ल श्रर)2 लें तो श=य2-र2 और ष=2 य र।

फिर
center|

यदि हम य, र समतल में ऋजु रेखाओं की दो संहतियाँ य=क;र=ख लें, जो परस्पर लंब हों, तो श, ष समतल में उनकी आकृतियों परवलय होंगी : ष2=4क2 (क2-श) और ष2=4ख2 (ख2+ श) जो समनाभि और समकोणीय हैं। स्पष्ट है कि य, र समतल के समकोण श, ष समतल में भी समकोणों से ही निरूपित होते हैं।

इसी प्रकार यदि हम श, ष समतल में दो रेखापुंज लें : श=ग, ष=घ जो समकोणीय हैं, तो य, र समतल और आयताकार अतिपरवलय य2-र2=ग और 2यर=घ उनकी संगत आकृतियाँ होंगी। स्पष्ट है कि इस निरूपण में भी आकृतियों के कोणगुण अक्षुण्ण बने रहते हैं।[1]


पन्ने की प्रगति अवस्था
आधार
प्रारम्भिक
माध्यमिक
पूर्णता
शोध

टीका टिप्पणी और संदर्भ

  1. सं.ग्रं.-ए.आर. फोरसाइय : थ्योरी ऑव फंक्शंस; डब्ल्यू.एफ. ऑसगुड : कनफार्मल रिप्रेजेंटेशन ऑव सर्फेंस अपॉन अनदर।
  1. हिन्दी विश्वकोश, खण्ड 1 |प्रकाशक: नागरी प्रचारिणी सभा, वाराणसी |संकलन: भारत डिस्कवरी पुस्तकालय |पृष्ठ संख्या: 125 |

संबंधित लेख