अनिश्चितता सिद्धान्त: Difference between revisions

भारत डिस्कवरी प्रस्तुति
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
m (Text replace - "{{लेख प्रगति" to "{{प्रचार}} {{लेख प्रगति")
m (Text replacement - " काफी " to " काफ़ी ")
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
([[अंग्रेज़ी भाषा|अंग्रेज़ी]]:Heisenberg's Uncertaninty Principle) [[रसायन विज्ञान]] में हाइजेनवर्ग का अनिश्चितता सिद्धान्त के अनुसार किसी [[कण]] की [[स्थिति]] और [[वेग]] का एक साथ यथार्थ निर्धारण असंभव है।
'''अनिश्चितता सिद्धांत '''([[अंग्रेज़ी भाषा|अंग्रेज़ी]]:Heisenberg's Uncertaninty Principle) की व्युत्पत्ति हाइजनबर्ग ने क्वांटम यांत्रिकी के व्यापक नियमों से सन [[1927]] ई. में की थी। इस सिद्धांत के अनुसार किसी गतिमान कण की स्थिति और संवेग को एक साथ एकदम ठीक-ठीक नहीं मापा जा सकता। यदि एक राशि अधिक शुद्धता से मापी जाएगी तो दूसरी राशि के मापन में उतनी ही अशुद्धता बढ़ जाएगी, चाहे इसे मापने में कितनी ही कुशलता क्यों न हो। इन राशियों की अशुद्धियों का गुणनफल 'प्लांक नियतांक' <ref>h</ref> से कम नहीं हो सकता है। यदि किसी गतिमान कण के स्थिति निर्दशांक x के मापन में D x की त्रुटि (या अनिश्चितता) और x अक्ष की दिशा में उसके संवेग p के मापने में D p की त्रुटि हो तो इस सिद्धांत के अनुसार<br />
D x ´ D p ³ h


{{प्रचार}}
इसमें h प्लांक का नियतांक है और चिह्न ³ का तात्पर्य यह है कि अनिश्तिताओं का गुणनफल दाहिनी ओर की राशि h से कम नहीं हो सकता है। इससे प्रकट होता है कि किसी कण का कोई निर्दशांक और उसके संवेग का तत्संगन संघटक दोनों एक साथ यथार्थता पूर्वक नहीं जाने जा सकते और यदि इन दोनों संयुग्मी राशियों में से एक की अनिश्चितता बहुत कम हो तो दूसरी की बहुत अधिक होती है।<ref name="nn">{{cite web |url=http://bharatkhoj.org/india/%E0%A4%85%E0%A4%A8%E0%A4%BF%E0%A4%B6%E0%A5%8D%E0%A4%9A%E0%A4%BF%E0%A4%A4%E0%A4%A4%E0%A4%BE_%E0%A4%B8%E0%A4%BF%E0%A4%A6%E0%A5%8D%E0%A4%A7%E0%A4%BE%E0%A4%82%E0%A4%A4|title=अनिश्चितता सिद्धांत|accessmonthday=5 अगस्त|accessyear=2015|last= |first= |authorlink= |format= |publisher=भरतखोज|language=हिन्दी}}</ref>
{{लेख प्रगति
==यथार्थ मापन==
|आधार=आधार1
अनिश्चितता के संबंध एक ओर तो कण की स्थिति की किसी [[तरंग]] से संगति स्थापित करने की संभावना के नियमों के तथा दूसरी ओर प्रायिकता मूलक निर्वचन<ref>इंटरप्रिटेशन प्राबेबिलिस्टिक</ref> के व्यापक नियमों के अनिवार्य परिणाम हैं। हाइजनबर्ग और मोहर ने नापने की प्रक्रिया का सूक्ष्म और गहन विश्लेषण करके यह सिद्ध कर दिया कि किसी भी माप के परिणाम अनिश्चितता सिद्धांत के प्रतिकूल नहीं निकल सकते। यदि हम किसी कण की स्थिति x एकदम शुद्ध माप लें तो इसकी स्थिति की अनिश्चितता Dx शून्य बराबर होगी।
|प्रारम्भिक=
 
|माध्यमिक=
उस कण के संवेग की अनिश्चितता गणित के नियमों के अनुसार, अपरिमित हो जाएगी। अत: हम इस सरल निष्कर्ष पर पहुँचने के लिए बाध्य हो जाते हैं कि जिस क्षण काल पर हम कण की स्थिति की यथार्थ माप प्राप्त करते हैं उस काल पर उसका वेग अनिर्णीत हो जाता है। अगर किसी क्षण काल पर कण का वेग परम यथार्थता से मापा जाता है तो उस क्षण काल पर कण की स्थिति क्या थी, यह पता लगाने का हमारे पास विकल्प नहीं रहता। ऐसी अवस्था में स्थिति और संवेग दोनों की माप कुछ अनिश्चितताओं<ref>या त्रुटियों</ref> के भीतर ही संभव है। इस प्रकार हाइजनबर्ग ने सिद्ध कर दिया कि सूक्ष्म कणों के विश्व में मापक उपकरणों की उपयोगिता सीमित होती है। ये उपकरण कणों की [[गति]] को यथार्थ रूप में मापने में सक्षम होते हैं।<ref name="nn"/>
|पूर्णता=
==सूक्ष्म मापों को मापने का स्तर==
|शोध=
[[विज्ञान]] और तकनीकी के अनेक क्षेत्रों में सूक्ष्म मापों को मापने का स्तर काफ़ी ऊँचाई पर है और इस दिशा में निरंतर प्रगति हो रही है लेकिन अनिश्चितता सिद्धांत मापों की शुद्धता के लिए एक नियत सीमा निर्धारित कर देता है। उपकरण की शुद्धता इस सीमा से अधिक नहीं सकती है। आज तो लगभग सभी भौतिज्ञ ऐसे मापन यंत्र के आविष्कार की असंभावना को स्वीकार करते हैं जो इस सिद्धांत में निहित सीमाओं का उल्लंघन कर सकें।
}}
 
[[Category:रसायन विज्ञान]]
 
[[Category:विज्ञान_कोश]]
{{लेख प्रगति |आधार= |प्रारम्भिक=प्रारम्भिक1 |माध्यमिक= |पूर्णता= |शोध= }}
==टीका-टिप्पणी और संदर्भ==
<references/>
==संबंधित लेख==
{{रसायन विज्ञान}}
[[Category:रसायन विज्ञान]][[Category:विज्ञान]][[Category:विज्ञान_कोश]][[Category:हिन्दी विश्वकोश]]
__INDEX__
__INDEX__

Latest revision as of 11:01, 5 July 2017

अनिश्चितता सिद्धांत (अंग्रेज़ी:Heisenberg's Uncertaninty Principle) की व्युत्पत्ति हाइजनबर्ग ने क्वांटम यांत्रिकी के व्यापक नियमों से सन 1927 ई. में की थी। इस सिद्धांत के अनुसार किसी गतिमान कण की स्थिति और संवेग को एक साथ एकदम ठीक-ठीक नहीं मापा जा सकता। यदि एक राशि अधिक शुद्धता से मापी जाएगी तो दूसरी राशि के मापन में उतनी ही अशुद्धता बढ़ जाएगी, चाहे इसे मापने में कितनी ही कुशलता क्यों न हो। इन राशियों की अशुद्धियों का गुणनफल 'प्लांक नियतांक' [1] से कम नहीं हो सकता है। यदि किसी गतिमान कण के स्थिति निर्दशांक x के मापन में D x की त्रुटि (या अनिश्चितता) और x अक्ष की दिशा में उसके संवेग p के मापने में D p की त्रुटि हो तो इस सिद्धांत के अनुसार
D x ´ D p ³ h

इसमें h प्लांक का नियतांक है और चिह्न ³ का तात्पर्य यह है कि अनिश्तिताओं का गुणनफल दाहिनी ओर की राशि h से कम नहीं हो सकता है। इससे प्रकट होता है कि किसी कण का कोई निर्दशांक और उसके संवेग का तत्संगन संघटक दोनों एक साथ यथार्थता पूर्वक नहीं जाने जा सकते और यदि इन दोनों संयुग्मी राशियों में से एक की अनिश्चितता बहुत कम हो तो दूसरी की बहुत अधिक होती है।[2]

यथार्थ मापन

अनिश्चितता के संबंध एक ओर तो कण की स्थिति की किसी तरंग से संगति स्थापित करने की संभावना के नियमों के तथा दूसरी ओर प्रायिकता मूलक निर्वचन[3] के व्यापक नियमों के अनिवार्य परिणाम हैं। हाइजनबर्ग और मोहर ने नापने की प्रक्रिया का सूक्ष्म और गहन विश्लेषण करके यह सिद्ध कर दिया कि किसी भी माप के परिणाम अनिश्चितता सिद्धांत के प्रतिकूल नहीं निकल सकते। यदि हम किसी कण की स्थिति x एकदम शुद्ध माप लें तो इसकी स्थिति की अनिश्चितता Dx शून्य बराबर होगी।

उस कण के संवेग की अनिश्चितता गणित के नियमों के अनुसार, अपरिमित हो जाएगी। अत: हम इस सरल निष्कर्ष पर पहुँचने के लिए बाध्य हो जाते हैं कि जिस क्षण काल पर हम कण की स्थिति की यथार्थ माप प्राप्त करते हैं उस काल पर उसका वेग अनिर्णीत हो जाता है। अगर किसी क्षण काल पर कण का वेग परम यथार्थता से मापा जाता है तो उस क्षण काल पर कण की स्थिति क्या थी, यह पता लगाने का हमारे पास विकल्प नहीं रहता। ऐसी अवस्था में स्थिति और संवेग दोनों की माप कुछ अनिश्चितताओं[4] के भीतर ही संभव है। इस प्रकार हाइजनबर्ग ने सिद्ध कर दिया कि सूक्ष्म कणों के विश्व में मापक उपकरणों की उपयोगिता सीमित होती है। ये उपकरण कणों की गति को यथार्थ रूप में मापने में सक्षम होते हैं।[2]

सूक्ष्म मापों को मापने का स्तर

विज्ञान और तकनीकी के अनेक क्षेत्रों में सूक्ष्म मापों को मापने का स्तर काफ़ी ऊँचाई पर है और इस दिशा में निरंतर प्रगति हो रही है लेकिन अनिश्चितता सिद्धांत मापों की शुद्धता के लिए एक नियत सीमा निर्धारित कर देता है। उपकरण की शुद्धता इस सीमा से अधिक नहीं सकती है। आज तो लगभग सभी भौतिज्ञ ऐसे मापन यंत्र के आविष्कार की असंभावना को स्वीकार करते हैं जो इस सिद्धांत में निहित सीमाओं का उल्लंघन कर सकें।


पन्ने की प्रगति अवस्था
आधार
प्रारम्भिक
माध्यमिक
पूर्णता
शोध

टीका-टिप्पणी और संदर्भ

  1. h
  2. 2.0 2.1 अनिश्चितता सिद्धांत (हिन्दी) भरतखोज। अभिगमन तिथि: 5 अगस्त, 2015।
  3. इंटरप्रिटेशन प्राबेबिलिस्टिक
  4. या त्रुटियों

संबंधित लेख